Self-concordant barriers for hyperbolic means

نویسندگان

  • Adrian S. Lewis
  • Hristo S. Sendov
چکیده

The geometric mean and the function (det(·))1/m (on the m-by-m positive definite matrices) are examples of “hyperbolic means”: functions of the form p1/m , where p is a hyperbolic polynomial of degree m. (A homogeneous polynomial p is “hyperbolic” with respect to a vector d if the polynomial t → p(x+ td) has only real roots for every vector x.) Any hyperbolic mean is positively homogeneous and concave (on a suitable domain): we present a self-concordant barrier for its hypograph, with barrier parameter O(m2). Our approach is direct, and shows, for example, that the function −m log(det(·) − 1) is an m2-self-concordant barrier on a natural domain. Such barriers suggest novel interior point approaches to convex programs involving hyperbolic means.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innnite-dimensional Semideenite Programming:regularized Determinants and Self-concordant Barriers

We discuss possible approaches to generalizations of the semideenite programming in a more general context of the innnite-dimensional version of the Nesterov-Nemirovsky scheme. Examples of innnite-dimensional operator domains for which there exist self-concordant barriers are presented. The key notion of the regularized determinant is used to construct self-concordant barriers.

متن کامل

Interior-point Algorithms for Convex Optimization Based on Primal-dual Metrics

We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms whose iteration complexity we analyse are so-called short-step algorithms. Our iteration complexity bounds match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming...

متن کامل

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...

متن کامل

A New Class of Self-Concordant Barriers from Separable Spectral Functions

Given a separable strongly self-concordant function f : Rn → R, we show the associated spectral function F(X) = ( f ◦ λ )(X) is also strongly self-concordant function. In addition, there is a universal constant O such that, if f (x) is separable self-concordant barrier then O2F(X) is a self-concordant barrier. We estimate that for the universal constant we have O ≤ 22. This generalizes the rela...

متن کامل

Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat structured convex optimization problems w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2001